

Hemodynamic Behaviour During Tilt Test in Patients with Long COVID

Ana L G Santos¹, Christian G Sasaki¹, Stella T Maximo², Beatriz O Machado¹, Kelly C B Silva¹, Samuel M Camargo¹, Rodrigo O Maranõn³, Jose L Puglisi⁴, Daniel G Goroso^{1,5}

¹University Mogi das Cruzes, Mogi das Cruzes, SP, Brazil

²São Leopoldo Mandic Medical School, Araras, SP, Brazil

³Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina

⁴College of Medicine, California North State University, CA, USA

⁵Fac de Educación Física, Universidad Nacional de Tucumán, Tucumán, Argentina

Abstract

The Tilt Test is an exam used to assess the cardiovascular autonomic response to postural changes. This study investigated the hemodynamic behavior of patients with Long COVID during the Tilt Test, focusing on changes in systolic (SBP) and diastolic (DBP) blood pressure, in addition to heart rate (HR). The sample consisted of 56 participants, divided into a control group and a study group with a history of COVID-19 infection. The test protocol consisted of 15 min in the supine position, 15 min in the inclined position and, 20 min in the recumbent position. The results showed that patients in the study group had lower blood pressure variability and lower autonomic response compared to the control group, especially in the inclined position. The mean difference of SBP-DBP in the second phase was 35.5 ± 14.0 mmHg in the study group vs 35.7 ± 8.53 mmHg in the control group showing lower hemodynamic adaptation in patients with Long COVID. Such findings may be related to changes in the sensitivity of baroreceptors or reduced venous return. It is concluded that the Tilt Test can be a useful tool to identify autonomic dysfunctions in patients with Long COVID, contributing to the early diagnosis and appropriate clinical management of these individuals.

1. Introduction

In 2020, the world faced a pandemic that resulted in more than 250 million people infected by the COVID-19 virus. The scientific community has focused primarily on the development of strategies that reduce hospitalizations and deaths in the early stages of the disease, with emphasis on the administration of vaccines[1].

With the control of these acute complications, researchers around the world began to investigate the possible long-term side effects caused by this viral infection, which came to be called Long COVID[2].

Postural Orthostatic Tachycardia Syndrome (POTS) is a condition that affects the autonomic nervous system (ANS), and can cause tachycardia, fainting, fatigue, among

other symptoms that significantly impact quality of life[3]. Recent research suggests that individuals who have had COVID-19 have autonomic dysfunction, which can trigger POTS[4], [5].

The Tilt Test is considered the standard exam for ANS assessment. It is divided into three phases: i) horizontal position, ii) inclined, and iii) decubitus. During stretcher elevation, a physiological response of increased heart rate and changes in blood pressure due to the action of gravity is expected. However, in patients in the control group with no history of COVID-19, the heart rate tends to remain stable throughout the test[6].

Blood pressure is influenced by several factors, such as wakefulness, temperature, emotions, and body position. The latter is especially relevant because it directly involves autonomic regulation[7]. In patients with cardiovascular autonomic dysfunction, such as those affected by Long COVID, changes in blood pressure levels may occur, evidencing an imbalance in circulatory homeostasis.

Thus, the objective of this study is to identify abnormal hemodynamic responses, related to changes in blood flow and blood pressure, which deviate from the expected pattern, as a clinical manifestation of Long COVID.

2. Objectives

To describe changes in blood pressure levels in patients with Long COVID by applying techniques in the processing of signals in the time domain, in order to assist in early diagnosis and contribute to the improvement of the quality of life of these patients.

3. Material and Methods

The data collection was scheduled at the Polyclinic Hospital / University of Mogi das Cruzes (UMC), Dom Antônio Cândido de Alvarenga Street, 170 -Centro, Mogi das Cruzes, SP, Brazil. The sample consisted of 56 participants of both sexes (27F and, 29M), 37 from the study group (SG) and 19 from the control group (CG). The sample is balanced, as shown in Table 1.

Table 1. Clinical Profile

	SG	CG
Male	15	14
Age Female (Years)	39.8 ± 16	35 ± 17.9
Age Male (Years)	39.1 ± 13.3	32.1 ± 14.8
Weight Female (Kg)	73 ± 18.2	68.2 ± 14.1
Male Weight (Kg)	83.8 ± 12	81.9 ± 16.5
Height Female (cm)	162 ± 5.7	165 ± 8.2
Male Height (cm)	174 ± 6.7	175 ± 6.8
BMI Female (Kg/m ²)	27.8 ± 6.4	25 ± 3.6
BMI Male (Kg/m ²)	27.7 ± 3.1	26.7 ± 3.1

Initially, the patient goes through the inclusion and exclusion criteria, having to be between 18 and 75 years old, not have COVID-19 or be pregnant, not use medications that alter autonomous responses.

The present proposal is a subproject related to the FAPESP project "On-line non-invasive detection of postural orthostatic tachycardia syndrome in post-COVID-19 patients" (<https://bv.fapesp.br/55354>), which was approved by CEP CAAE: 64561022.7.0000.5497.

The patient entering the office, the first step is the explanation and collection of signatures for the Informed Consent Form (ICF) and the Term of Authorization for the Use of Image and Voice. Soon after, the patient undergoes data collection, including personal information, date and brand of vaccines taken, preexisting diseases, medicines for continuous use, date of positive COVID tests, hospitalization history, etc. Patients are also measured and weighed to calculate BMI.

The volunteer is laid on the reclining stretcher. The electrodes were placed on the patient's chest (Lead II) for ECG recording with a sampling frequency of 1.5kHz. At the same time, blood pressure was measured in the left arm with an automatic device every one minute (Figure 1).

Figure 1. Patient prepared

The tilt test was divided into three stages: Step 1: the participant remains in the supine position for 15 minutes. Step 2: The participant remains in the 75° inclined position

for an additional 15 minutes. Step 3: The participant returns to the supine position and remains for 20 min until they recover [8]. Figure 2 shows the heart rate and blood pressure response of a participant in the control group during the Tilt Test.

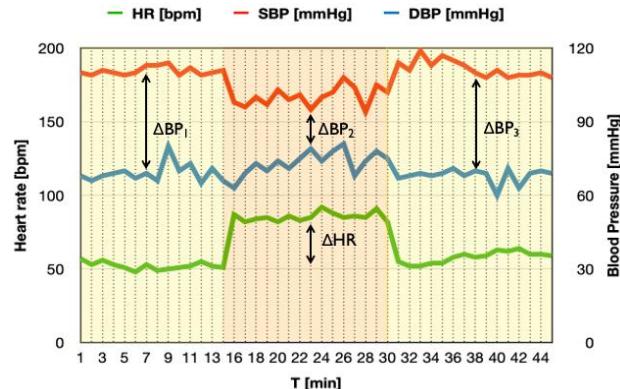


Figure 2. SBP, DBP and HR of CG participant during Tilt Test. $\Delta\text{BP} = \text{SBP} - \text{DBP}$ define to phase 1, 2, 3.

It was defined $\Delta\text{BP} = \text{SBP} - \text{DBP}$ in each phase, see Figure 2. Power BI was used to locate all collection and anamnesis information in a unified system, as well as to help visualize data and statistical calculations. Software PyBioS was used to calculate parameters in three phases in time domain[9]. The Mann-Whitney test was applied to assess difference between group (significance level, $p < 0.05$).

4. Results

Table 1 presents the clinical characteristics of the sample. The study group had a higher proportion of women (81.48%) compared to the control group (18.52%), a difference considered statistically significant ($p = 0.042$). Mean ages were slightly higher in the study group, for both women and men.

Figure 3 shows the comparison of the hemodynamic response to the Tilt Test between participants in control and study groups. It is observed that the individuals in the control group (GLSV29fev24) generally demonstrate greater stability of blood pressure values, with physiological variations expected during the orthostatic phase.

In the participants of the study group (AES14set23), less adaptive changes are observed. It presents maintenance of blood pressure levels throughout all phases, with a slight increase in SBP at the end of collection. In general, the data indicates that participants in the control group tend to have better hemodynamic regulation in the face of postural change, while those in the study group show signs of possible autonomic dysfunction.

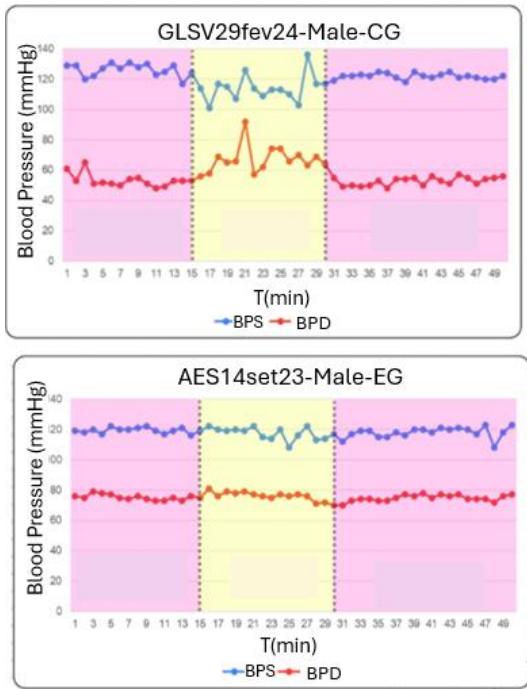


Figure 3. SBP and DBP by group and sex

Table 2. Hemodynamic parameters

	SG	CG
Mean ΔBP [mmHg]	41.4 ± 12.4	43.8 ± 10.1
SD ΔBP [mmHg]	6.76 ± 2.2	7.49 ± 2.7
RMSSD [mmHg2]	6.7 ± 1.87	6.9 ± 2.23
Triangular Index	2.12 ± 0.578	2.16 ± 0.561
ΔBP Phase 1[mmHg]	44.2 ± 12.4	46.9 ± 12.1
SD ΔBP Phase 1[mmHg]	3.76 ± 1.78	3.56 ± 1.26
RMSSD Phase 1[mmHg2]	5.11 ± 2.64	4.76 ± 1.86
Triangular Index Phase 1	1.49 ± 0.522	1.46 ± 0.380
ΔBP Phase 2[mmHg]	35.5 ± 14	35.7 ± 8.53
SD ΔBP Phase 2[mmHg]	5.68 ± 2.64	6.12 ± 2.88
RMSSD Phase 2[mmHg2]	7.57 ± 3.13	8.02 ± 3.47
Triangular Index Phase 2	1.85 ± 0.742	2.09 ± 0.711
ΔBP Phase 3[mmHg]	43.6 ± 12.4	47.5 ± 10.6
SD ΔBP Phase 3[mmHg]	4.19 ± 1.58	4.05 ± 1.78
RMSSD Phase 3[mmHg2]	5.53 ± 2.06	5.70 ± 2.72
Triangular Index Phase 3	1.67 ± 0.460	1.64 ± 0.393

Regarding hemodynamic parameters, the behavior of blood pressure during the three phases of the Tilt Test was evaluated by means of the difference between systolic and diastolic blood pressure (ΔBP). The mean ΔBP values throughout the phases showed a trend towards a reduction in the phase 2 in both groups, followed by an

increase in the final phase of rest (phase 3), as evidenced in Table 2.

In the control group, SBP-DBP values were consistently higher in all phases, especially in phase 3, where the mean difference reached 47.5 ± 10.6 mmHg, compared to 43.6 ± 12.4 mmHg in the study group. In the orthostatic phase, the values were similar between the groups (35.5 ± 14.0 mmHg in the OS vs 35.7 ± 8.53 mmHg in the CG), indicating a physiological response similar to the inclination, but with lower pressure variability in the study group. However, these differences do not present significant differences.

As shown in Figure 4, the groups present significant differences in the transfer phase between supine and incline or inclined or supine, since the control group remains stable when the SBP-BPD is considered throughout the examination, while the study group presents this difference due to the hemodynamic response.

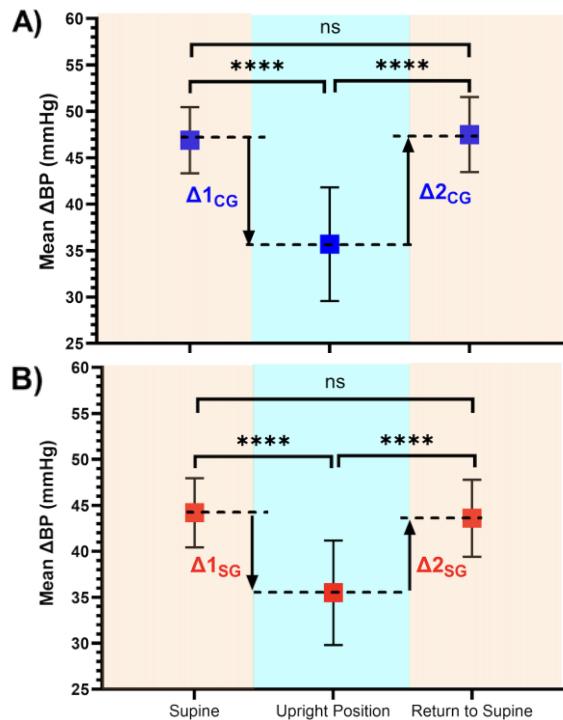


Figure 4. Mean ΔBP during tilt test for control (A) and long COVID-19 (B) participants. $\Delta 1_{CG/SG}$ represents the difference between mean ΔBP in the transition from supine to upright position, and $\Delta 2_{CG/SG}$ the difference between mean ΔBP in the transition from upright position to return to supine for control (CG), and study groups (SG).

From a clinical point of view, it was also observed that the study group had a higher prevalence of comorbidities such as hypertension (81.8% of cases), diabetes, hypothyroidism, and obesity — factors that, although controlled by inclusion/exclusion criteria, can

impact autonomic regulation and amplify postviral effects.

5. Discussion

The results obtained in this study indicate that patients with a history of COVID-19 infection (study group) showed changes in hemodynamic regulation during the Tilt Test. Although the absolute values of Δ BP were similar between the groups, the lower pressure variability in the study group — evidenced by lower values of SD, RMSSD and Triangular Index — points to a possible impairment of the autonomic response, but it is confirmed that fall and rise in Δ BP has significant differences. This lower oscillation may be related to a baroreflex dysfunction, since the baroreceptor reflex is responsible for quickly adjusting blood pressure in the face of postural changes. Under normal conditions, tilting generates blood redistribution and activates this reflex, promoting compensatory tachycardia and peripheral vasoconstriction. However, in patients with Long COVID, this mechanism may be attenuated.

In the orthostatic phase (phase 2), the mean SBP-DBP values decreased in both groups, reflecting physiological adaptation to postural stress. However, the study group exhibited a more cushioned response in the final phase (phase 3), suggesting impairment in the reestablishment of circulatory homeostasis. This pattern may be associated with Postural Orthostatic Tachycardia Syndrome (POTS), a condition more frequently described in post-COVID-19 patients [4], [5].

The study group also had a higher prevalence of hypertension, diabetes, obesity, and hypothyroidism, conditions known to be associated with reduced baroreflex sensitivity [7]. This reinforces the need to consider comorbidities in the context of hemodynamic assessment and in the differentiation between sequelae of viral infection and preexisting risk factors.

The comparative analysis of Figure 4 suggests that individuals in the control group have a more stable response to postural change. However, in the study group, the slight reduction in SBP during orthostasis may indicate a subtle autonomic dysfunction, a characteristic observed in some post-COVID-19 patients.

Additional studies with a larger sample, analysis by sex, and application of multiple logistic regression are recommended to deepen the understanding of post-COVID dysautonomia and its clinical manifestations. The integration of Tilt Test into remote monitoring strategies may represent an innovative approach to early diagnosis and management of POTS and other autonomic dysfunctions in vulnerable populations.

Acknowledgments

DGG is grateful for the financial support of FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo,

Brazil (Grant# 2021/14231-0). ALGdS thanks financial support from CNPQ-National Development Council (164066/2024-1), KCBS thanks financial support from CAPES (88887.941749/2024-00). Thanks to Dr. Melquiades M. Portela and Jessica Lelé for their help and support during the project.

References

- [1] L. Jin *et al.*, “CoronaVac: A review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2”, *Human Vaccines & Immunotherapeutics*, v. 18, n. 6, p. 2096970, nov. 2022, doi: 10.1080/21645515.2022.2096970.
- [2] S. L. Leon *et al.*, “More than 50 Long-term effects of Covid-19: a systematic review and meta-analysis”, 29 de janeiro de 2021, *Infectious Diseases (except HIV/AIDS)*. doi: 10.1101/2021.01.27.21250617.
- [3] S. Vernino *et al.*, “Postural orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019 National Institutes of Health Expert Consensus Meeting - Part 1”, *Autonomic Neuroscience*, v. 235, p. 102828, nov. 2021, doi: 10.1016/j.autneu.2021.102828.
- [4] Y. Amekran *et al.*, “Postural orthostatic tachycardia syndrome and post-acute Covid-19”, *GCSP*, v. 2022, n. 1–2, jun. 2022, doi: 10.21542/gcsp.2022.13.
- [5] D. Acanfora *et al.*, “Impaired vagal activity in long-Covid-19 patients”, *Viruses*, v. 14, n. 5, p. 1035, maio 2022, doi: 10.3390/v14051035.
- [6] L. C. M. Vanderlei *et al.*, “Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica”, *Rev Bras Cir Cardiovasc*, v. 24, n. 2, p. 205–217, jun. 2009, doi: 10.1590/S0102-76382009000200018.
- [7] L. M. Ferreira *et al.*, “Resposta da pressão arterial pós-exercício e seus fatores associados”, *Educ. fís. cienc.*, v. 24, n. 2, p. e221, abr. 2022, doi: 10.24215/23142561e221.
- [8] S. M. Camargo *et al.*, “Assessing autonomic nervous system imbalance in post-Covid-19 patients through heart rate variability during tilt testing”, in *Proceeding of the Computing in Cardiology Conference*, Nov. 2023. doi: 10.22489/CinC.2023.411.
- [9] L. E. V. Silva *et al.*, “PyBioS: A freeware computer software for analysis of cardiovascular signals”, *Computer Methods and Programs in Biomedicine*, v. 197, p. 105718, dez. 2020, doi: 10.1016/j.cmpb.2020.105718.

Address for correspondence:

Daniel Gustavo Goroso

Biological Systems Modeling and Signal Processing Lab.

Hospital Policlínica / Universidade de Mogi das Cruzes (UMC)

Rua Dom Antônio Cândido de Alvarenga, 170 – Centro.

CEP: 08780-911. Mogi das Cruzes, SP, Brazil.

E-mail address: danielg@umc.br